Amorphous cobalt silicate nanobelts@carbon composites as a stable anode material for lithium ion batteries.

نویسندگان

  • Wei Cheng
  • Felix Rechberger
  • Gabriele Ilari
  • Huan Ma
  • Wan-Ing Lin
  • Markus Niederberger
چکیده

During the past decade, tremendous attention has been given to the development of new electrode materials with high capacity to meet the requirements of electrode materials with high energy density in lithium ion batteries. Very recently, cobalt silicate has been proposed as a new type of high capacity anode material for lithium ion batteries. However, the bulky cobalt silicate demonstrates limited electrochemical performance. Nanostructure engineering and carbon coating represent two promising strategies to improve the electrochemical performance of electrode materials. Herein, we developed a template method for the synthesis of amorphous cobalt silicate nanobelts which can be coated with carbon through the deposition and thermal decomposition of phenol formaldehyde resin. Tested as an anode material, the amorphous cobalt silicate nanobelts@carbon composites exhibit a reversible high capacity of 745 mA h g-1 at a current density of 100 mA g-1, and a long life span of up to 1000 cycles with a stable capacity retention of 480 mA h g-1 at a current density of 500 mA g-1. The outstanding electrochemical performance of the composites indicates their high potential as an anode material for lithium ion batteries. The results here are expected to stimulate further research into transition metal silicate nanostructures for lithium ion battery applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale anode materials in lithium ion batteries by combining micro- with nanoparticles: design of mesoporous TiO2 microfibers@nitrogen doped carbon composites.

TiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating. Herein, we report a template-assisted sy...

متن کامل

Amorphous cobalt silicate nanobelts@carbon composites as a stable anode material for lithium ion batteries† †Electronic supplementary information (ESI) available: Experimental details, AFM images, XRD patterns, SEM images, SEM-EDX element mapping, TEM images, Raman spectrum, TGA analysis, IR spectra, electrochemical characterization and N2 gas sorption measurements. See DOI: 10.1039/c5sc02525g Click here for additional data file.

Laboratory for Multifunctional Materials, Vladimir-Prelog-Weg 5, 8093 Zurich, Swi mat.ethz.ch Electron Microscopy Center, Empa, Swiss F and Technology, Überlandstrasse 129, 8600 Laboratory for Nanometallurgy, Departmen Switzerland Department of Chemistry and Applied Switzerland † Electronic supplementary information AFM images, XRD patterns, SEM imag images, Raman spectrum, TGA an characterizat...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

Metall oxides have been proven to be potential candidates for the anode material of lithium-ion batteries (LIBs) because they offer high theoretical capacities, and are environmentally friendly and widely available. However, the low electronic conductivity and severe irreversible lithium storage have hindered a practical application. Herein, we employed ethanolamine as precursor to prepare Fe2O...

متن کامل

TiO2 Nanobelt@Co9S8 Composites as Promising Anode Materials for Lithium and Sodium Ion Batteries

TiO₂ anodes have attracted great attention due to their good cycling stability for lithium ion batteries and sodium ion batteries (LIBs and SIBs). Unfortunately, the low specific capacity and poor conductivity limit their practical application. The mixed phase TiO₂ nanobelt (anatase and TiO₂-B) based Co₉S₈ composites have been synthesized via the solvothermal reaction and subsequent calcination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 6 12  شماره 

صفحات  -

تاریخ انتشار 2015